Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun-Ying Ma, ${ }^{\text {a,b }}$ Tong-Xing Wu, ${ }^{\text {a }}$ Xue-Gong She ${ }^{\mathrm{a}}$ and Xin-Fu Pan ${ }^{\mathrm{a} *}$
${ }^{\text {a State Key Laboratory of Applied Organic }}$ Chemistry, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, Pingdingshan University, Pingdingshan Henan 467000, People's Republic of China

Correspondence e-mail: junying-ma@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
R factor $=0.047$
$w R$ factor $=0.134$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

[4-Bromo-2-(pyridin-2-ylmethyliminomethyl)-phenolato- $\left.\kappa^{3} O, N, N^{\prime}\right]$ methoxocobalt(III) perchlorate

The title Schiff base compound, $\left[\mathrm{Co}\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}\right)\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{O}\right)\right] \mathrm{ClO}_{4}$, is a mononuclear cobalt(III) compound. The $\mathrm{Co}^{\mathrm{III}}$ ion is coordinated by two N atoms and one O atom from a Schiff base ligand, and by another O atom from a coordinated methanolate ligand, giving an approximately square-planar geometry.

Comment

Cobalt complexes have been of great interest in coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Billson et al., 2000; Kotera et al., 2003; Fritsky et al., 2003). As an extension of work on the structural characterization of cobalt complexes, the title mononuclear cobalt(II) compound, (I), is reported.

(I)

Compound (I) is a perchlorate salt of a mononuclear cobalt(III) complex (Fig. 1). The $\mathrm{Co}^{\mathrm{III}}$ ion in the complex is four-coordinated by two N atoms and one O atom from the Schiff base ligand, and by another O atom from the methanol molecule, giving a square-planar geometry. The four coordinating atoms around the Co centre are approximately coplanar, giving a square-planar geometry with an average deviation of 0.039 (6) \AA; the Co atom lies 0.021 (2) \AA above this plane.

The $\mathrm{C} 7=\mathrm{N} 1$ bond length $[1.274$ (5) \AA; Table 1] conforms to the value for a double bond, while the $\mathrm{C} 8-\mathrm{N} 1$ bond length [1.461 (5) \AA] conforms to the value for a single bond. The $\mathrm{Co} 1-\mathrm{O} 1$ bond length $[1.898$ (3) \AA A $]$ is a little longer than the corresponding value of 1.876 (3) A observed in another Schiff base cobalt(III) complex (You et al., 2003). The Co1-N1 bond length $[1.940(3) \AA$] is comparable with the value of 1.936 (4) \AA observed in the same complex. Both trans angles in the $\mathrm{CoN}_{2} \mathrm{O}_{2}$ square plane are close to 180°, viz. 176.48 (14) and $175.10(13)^{\circ}$, indicating a slightly distorted square-planar geometry. The smallest bond angles for the $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$ [82.96(15) ${ }^{\circ}$] correlate with the strained ligand bite angle for the five-membered chelate ring.

In the crystal structure, the molecules are stacked along the a axis (Fig. 2). An O1 $\cdots \mathrm{O} 6(1-x,-y, 1-z)$ short contact [2.665 (6) \AA] is observed in the crystal structure.

Received 9 March 2005 Accepted 10 March 2005 Online 18 March 2005

Experimental

2-Aminomethylpyridine ($0.1 \mathrm{mmol}, 10.8 \mathrm{mg}$) and salicylaldehyde $(0.1 \mathrm{mmol}, 12.2 \mathrm{mg})$ were dissolved in methanol (10 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To this solution was added a methanol solution $(10 \mathrm{ml})$ of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.1 \mathrm{mmol}, 36.8 \mathrm{mg})$ with stirring. After keeping the resulting solution in air for 12 d , brown block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}\right)\left(\mathrm{CH}_{3} \mathrm{O}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=479.55$
Monoclinic, $P 2_{1} / n$
$a=7.194$ (2) \AA 。
$b=19.119$ (2) \AA
$c=12.694$ (2) \AA
$\beta=95.846$ (2) ${ }^{\circ}$
$V=1736.9(6) \AA^{3}$
$Z=4$
$D_{x}=1.834 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4575
reflections
$\theta=2.4-24.7^{\circ}$
$\mu=3.48 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, brown
$0.23 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.497, T_{\text {max }}=0.761$
20032 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.134$
$S=1.04$
4190 reflections
263 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Co1-O1	$1.898(3)$	Co1-N2	$1.987(3)$
Co1-N1	$1.940(3)$	$\mathrm{Co} 1-\mathrm{O} 6$	$1.996(3)$
O1-Co1-N1	$93.70(13)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 6$	$89.75(12)$
O1-Co1-N2	$176.48(14)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 6$	$175.10(13)$
N1-Co1-N2	$82.96(15)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 6$	$93.65(13)$

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$. The O atoms of the perchlorate anion are disordered over two distinct sites with occupancies of 0.516 (19) and 0.484 (19). The $\mathrm{Cl}-\mathrm{O}$ and $\mathrm{O} \cdots \mathrm{O}$ distances in both disordered components were restrained to be equal. The unassigned maximum residual density is $0.48 \AA$ from atom Co 1 and the minimum residual density is $0.77 \AA$ from atom Br 1 .

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major components of the disordered perchlorate anion are shown.

Figure 2
The crystal packing of (I), viewed along the a axis.

The authors thank the State Key Laboratory of Applied Organic Chemistry, Lanzhou University, for funding this study.

References

Billson, T. S., Crane, J. D., Fox, O. D. \& Heath, S. L. (2000). Inorg. Chem. Coттип. 3, 718-720.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Fritsky, I. O., Ott, R., Pritzkow, H. \& Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.
Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. \& Handa, M. (2003). Inorg. Chem. Commun. 6, 322-324.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
You, Z.-L., Qu, Y., Liu, W.-S., Tan, M.-Y. \& Zhu, H.-L. (2003). Acta Cryst. E59, m1038-m1040.

[^0]: (C) 2005 International Union of Crystallography

