Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Jun-Ying Ma,^{a,b} Tong-Xing Wu,^a Xue-Gong She^a and Xin-Fu Pan^a*

^aState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China, and ^bDepartment of Chemistry, Pingdingshan University, Pingdingshan Henan 467000, People's Republic of China

Correspondence e-mail: junying-ma@163.com

Key indicators

Single-crystal X-ray study T = 298 K Mean $\sigma(C-C) = 0.007 \text{ Å}$ Disorder in solvent or counterion R factor = 0.047 wR factor = 0.134 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

(CH₃O)]ClO₄, is a mononuclear cobalt(III) compound. The Co^{III} ion is coordinated by two N atoms and one O atom from a Schiff base ligand, and by another O atom from a coordinated methanolate ligand, giving an approximately square-planar geometry.

[4-Bromo-2-(pyridin-2-ylmethyliminomethyl)-

phenolato- $\kappa^3 O, N, N'$]methoxocobalt(III) perchlorate

Comment

Cobalt complexes have been of great interest in coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Billson et al., 2000; Kotera et al., 2003; Fritsky et al., 2003). As an extension of work on the structural characterization of cobalt complexes, the title mononuclear cobalt(II) compound, (I), is reported.

Compound (I) is a perchlorate salt of a mononuclear cobalt(III) complex (Fig. 1). The Co^{III} ion in the complex is four-coordinated by two N atoms and one O atom from the Schiff base ligand, and by another O atom from the methanol molecule, giving a square-planar geometry. The four coordinating atoms around the Co centre are approximately coplanar, giving a square-planar geometry with an average deviation of 0.039 (6) Å; the Co atom lies 0.021 (2) Å above this plane.

The C7=N1 bond length [1.274 (5) Å; Table 1] conforms to the value for a double bond, while the C8-N1 bond length [1.461(5) Å] conforms to the value for a single bond. The Co1-O1 bond length [1.898 (3) Å] is a little longer than the corresponding value of 1.876 (3) Å observed in another Schiff base cobalt(III) complex (You et al., 2003). The Co1-N1 bond length [1.940(3) Å] is comparable with the value of 1.936 (4) Å observed in the same complex. Both trans angles in the CoN_2O_2 square plane are close to 180° , viz. 176.48 (14) and $175.10 (13)^{\circ}$, indicating a slightly distorted square-planar geometry. The smallest bond angles for the N1-Co1-N2 $[82.96 (15)^{\circ}]$ correlate with the strained ligand bite angle for the five-membered chelate ring.

In the crystal structure, the molecules are stacked along the a axis (Fig. 2). An $O1 \cdots O6(1 - x, -y, 1 - z)$ short contact [2.665 (6) Å] is observed in the crystal structure.

The title Schiff base compound, $[Co(C_{13}H_{10}BrN_2O)-$

Received 9 March 2005 Accepted 10 March 2005 Online 18 March 2005

Experimental

2–Aminomethylpyridine (0.1 mmol, 10.8 mg) and salicylaldehyde (0.1 mmol, 12.2 mg) were dissolved in methanol (10 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To this solution was added a methanol solution (10 ml) of $\text{Co}(\text{CIO}_4)_2 \cdot 6\text{H}_2\text{O}$ (0.1 mmol, 36.8 mg) with stirring. After keeping the resulting solution in air for 12 d, brown block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

4190 independent reflections 2962 reflections with $I > 2\sigma(I)$

 $\begin{array}{l} R_{\rm int} = 0.041 \\ \theta_{\rm max} = 28.3^{\circ} \\ h = -9 \rightarrow 9 \end{array}$

 $k = -25 \rightarrow 25$

 $l = -16 \rightarrow 16$

Crystal data

[Co(C ₁₃ H ₁₀ BrN ₂ O)(CH ₃ O)]ClO ₄	$D_x = 1.834 \text{ Mg m}^{-3}$
$M_r = 479.55$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 4575
a = 7.194 (2) Å	reflections
b = 19.119 (2) Å	$\theta = 2.4-24.7^{\circ}$
c = 12.694 (2) Å	$\mu = 3.48 \text{ mm}^{-1}$
$\beta = 95.846 \ (2)^{\circ}$	T = 298 (2) K
V = 1736.9 (6) Å ³	Block, brown
Z = 4	$0.23 \times 0.10 \times 0.08 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS: Sheldrick, 1996)

 $T_{\text{min}} = 0.497, T_{\text{max}} = 0.761$ 20 032 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 1.7215P]
$wR(F^2) = 0.134$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
4190 reflections	$\Delta \rho_{\rm max} = 0.62 \text{ e} \text{ Å}^{-3}$
263 parameters	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1		
Selected geometric parameters	(Å,	°).

Co1-O1	1.898 (3)	Co1-N2	1.987 (3)
Co1-N1	1.940 (3)	Co1-O6	1.996 (3)
O1-Co1-N1	93.70 (13)	O1-Co1-O6	89.75 (12)
O1-Co1-N2	176.48 (14)	N1-Co1-O6	175.10 (13)
N1-Co1-N2	82.96 (15)	N2-Co1-O6	93.65 (13)

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93-0.97 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The O atoms of the perchlorate anion are disordered over two distinct sites with occupancies of 0.516 (19) and 0.484 (19). The Cl-O and O···O distances in both disordered components were restrained to be equal. The unassigned maximum residual density is 0.48 Å from atom Co1 and the minimum residual density is 0.77 Å from atom Br1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major components of the disordered perchlorate anion are shown.

Figure 2

The crystal packing of (I), viewed along the *a* axis.

The authors thank the State Key Laboratory of Applied Organic Chemistry, Lanzhou University, for funding this study.

References

- Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718–720.
- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.
- Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. & Handa, M. (2003). Inorg. Chem. Commun. 6, 322–324.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- You, Z.-L., Qu, Y., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1038–m1040.